Crystallographic Parameters in α -UF₅ and U₂F₉ by Multiphase Refinement of High-Resolution Neutron Powder Data

C. J. HOWARD,*,† J. C. TAYLOR,‡ AND A. B. WAUGH‡

[†]Australian Atomic Energy Commission and [‡]Division of Energy Chemistry, CSIRO, Lucas Heights Research Laboratories, Private Mail Bag, Sutherland, NSW, 2232, Australia

Received June 1, 1982

The crystal structures of α -UF₅ and U₂F₉ were refined with high-resolution neutron powder diffraction data from an α -UF₅/U₂F₉ mixture. Refinement was achieved by a multiphase Rietveld profile refinement technique. The results are compared with previous X-ray and neutron powder studies.

Introduction

Zachariasen (1, 2) deduced atomic positions in α -UF₅ and U₂F₉ from X-ray powder diffraction data and a consideration of packing possibilities. Laveissière (3) confirmed the U₂F₉ structure in a powder neutron study. Eller *et al.* (4) refined both structures with X-ray single-crystal data. They found a 0.2-Å correction to the x(F(2))parameter in α -UF₅ but their value of 0.2216(5) for x(F(1)) in U₂F₉ differed significantly from the Laveissière value of 0.2276(10). As our laboratory now has a high-resolution neutron powder diffractometer (HRD), with half-widths of ~0.25° in the range $0 < 2\theta < 160^\circ$, it seemed worthwhile to reexamine these structures with this instrument in order to check the 0.2-Å shift in α -UF₅ and the x(F(1)) parameter in U₂F₉. Data were obtained from α -UF₅ and U₂F₉ in a mixture, which was not difficult to pre-

TABLE I	
---------	--

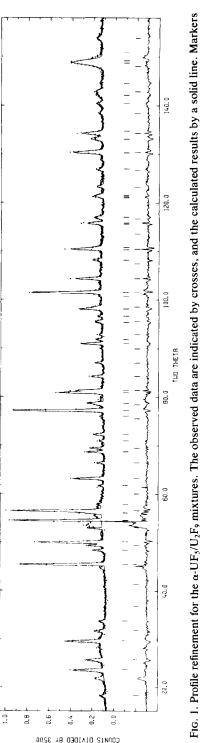
Multiphase Profile Refinement of HRD Neutron Data from α -UF₃/U₂F₉ Mixture

R (weighted profile)	$= (\Sigma w (y_0 - y_c)^2 / \Sigma w y_0^2)^{1/2}$	= 0.157
R (expected)	$= ((NO - NV)/\Sigma w y_0^2)^{1/2}$	= 0.100
Bragg R	$= \Sigma I_0 - I_c / \Sigma I_0$	$\doteq 0.052 (\alpha - UF_5)$
		$= 0.030 (U_2F_9)$
Goodness of fit	$= \Sigma w(y_0 - y_c)^2 / (NO - NV)$	= 2.44
Preferred orientation for	or α -UF ₅ (110 vector) G	= 0.099(10)
Asymmetry parameter	= 0.17(1)	
Half-width parameters	U = 0.086(7), V = -0.105(17),	W = 0.151(8)
	where $H^2 = U \tan^2 \theta + V \tan \theta$	+ W

^{*} To whom correspondence should be addressed.

pare. To analyze this data, the multiphase profile refinement method was employed.

Experimental and Refinement


An α -UF₅/U₂F₉ mixture was prepared by heating a β -UF₅ sample from a previous study (5) at 180°C until there was no further change (in 24 hr) in the diffraction pattern. Neutron powder data to $2\theta = 160^{\circ}$ were collected on the HRD, the sample being held in a quartz tube. The value of λ was fixed at 1.8928 Å, which gave a = 8.4716 Å for U_2F_9 . Refinement was achieved with the two-phase program of Wiles and Young (6), with corrections and an improved asymmetry function (7). The scattering lengths were taken as b(U) = 8.61 fm and b(F) =5.66 fm. A preferred orientation correction was necessary for α -UF₅ but not for U₂F₉. Gaussian peaks were assumed. The presence of impurity was largely accounted for by excluding six 2θ regions of width 0.5 to 1.5° 20. The impurity could not be identified from published patterns, but it may have been $UOF_2(4)$.

The results of the multiphase refinement are given in Table I and Fig. 1.

Discussion

(a) α -UF₅. Our value for the x(F(2)) parameter in α -UF₅, 0.2885(9) (Table II), is in agreement with the X-ray value of 0.285(1) of Eller *et al.* (4); thus the shift of 0.2 Å from the Zachariasen value (0.315) is confirmed. Our y(F(2)) parameter is also in agreement with the X-ray value of Eller *et al.* (4), confirming the validity of their discussion of the α -UF₅ structure in terms of bond length-bond strength correlations.

(b) U_2F_9 . The present HRD value of 0.2262(13) for x(F(1)) (Table III) agrees well with the Laveissière (3) value, whereas the Eller *et al.* (4) value is about 3σ lower. As the neutron data are more sensitive to the fluorine contribution, suggested parameters

PARAMETERS FOR α -UF ₅								
Study	<i>x</i> (F(2))	y(F(2))	a (Å)	с (Å)	B _U	B _F		
Zachariasen X-ray	0.315	0.113	6.525	4.472				
Eller <i>et al.</i> X-ray	0.285(1)	0.113(1)	6.518(4)	4.470(1)	_	_		
Present study neutron	0.2885(9)	0.1123(8)	6.5259(3)	4.4717(2)	1.68(11)	2.39(8)		

TABLE II

TABLE III

PARAMETERS FOR U2F9

Study	<i>x</i> (U)	x(F(1))	<i>x</i> (F(2))	z(F(2))	$B_{\rm U}$	$B_{\rm F}$
Zachariasen X-ray	0.187	0.225	0.20	0.46		
Laveissière neutron	0.1888(4)	0.2276(10)	0.2059(9)	0.4419(7)	_	
Eller et al. X-ray	0.1877(2)	0.2216(5)	0.2087(18)	0.447(29)		
Present study neutron	0.1884(6)	0.2262(13)	0.2078(5)	0.4425(8)	0.28(14)	1.30(13)

for U_2F_9 are the average of the present and Laveissière (3) studies.

This study illustrates the effectiveness of the multiphase profile refinement method when used in conjunction with high-resolution neutron powder data.

References

1. W. H. ZACHARIASEN, Acta Crystallogr. 2, 296 (1949).

- 2. W. H. ZACHARIASEN, Acta Crystallogr. 2, 390 (1949).
- 3. J. LAVEISSIÈRE, Bull. Soc. Fr. Mineral. Crystallogr. 90, 308 (1967).
- 4. P. G. Eller, A. C. Larson, J. R. Peterson, D. D. ENSOR, AND J. P. YOUNG, Inorg. Chim. Acta 37, 129 (1979).
- 5. J. C. TAYLOR AND A. B. WAUGH, J. Solid State Chem. 35, 137 (1980).
- 6. D. B. WILES AND R. A. YOUNG, J. Appl. Crystallogr. 14, 149 (1981).
- 7. C. J. HOWARD, J. Appl. Crystallogr. 15, in press.